https://doi.org/10.1097/md.0000000000038245 ·
Видання: Medicine, 2024, №21, с.e38245
Видавець: Ovid Technologies (Wolters Kluwer Health)
Автори: Nasser M. Alorfi, Ahmed M. Ashour, Adnan S. Alharbi, Fahad S. Alshehri
Анотація
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Список літератури
- Wirsching, Glioblastoma., Handb Clin Neurol, № 134, с. 381
https://doi.org/10.1016/B978-0-12-802997-8.00023-2 - Goodenberger, Genetics of adult glioma., Cancer Genet, № 205, с. 613
https://doi.org/10.1016/j.cancergen.2012.10.009 - Penas-Prado, Glioblastoma., Handb Clin Neurol, № 105, с. 485
https://doi.org/10.1016/B978-0-444-53502-3.00004-5 - D’Alessio, Pathological and molecular features of glioblastoma and its peritumoral tissue., Cancers (Basel), № 11, с. 469
https://doi.org/10.3390/cancers11040469 - Hanif, Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment., Asian Pac J Cancer Prev, № 18, с. 3
- Roesler, Neuroinflammation and immunoregulation in glioblastoma and brain metastases: recent developments in imaging approaches., Clin Exp Immunol, № 206, с. 314
https://doi.org/10.1111/cei.13668 - Sharma, Tumor microenvironment in glioblastoma: current and emerging concepts., Neurooncol Adv, № 5, с. 1
- Ghosh, The interplay of tumor vessels and immune cells affects immunotherapy of glioblastoma., Biomedicines, № 10, с. 2292
https://doi.org/10.3390/biomedicines10092292 - Galvão, Inflammation and gliomagenesis: bi-directional communication at early and late stages of tumor progression., Curr Pathobiol Rep, № 1, с. 19
https://doi.org/10.1007/s40139-012-0006-3 - Yuile, Survival of glioblastoma patients related to presenting symptoms, brain site and treatment variables., J Clin Neurosci, № 13, с. 747
https://doi.org/10.1016/j.jocn.2005.10.011 - Faivre, Clinical reasoning: worsening neurologic symptoms in a brain tumor patient., Neurology, № 85, с. e57
https://doi.org/10.1212/WNL.0000000000001848 - Batich, Long-term survival in glioblastoma with cytomegalovirus Pp65-targeted vaccination., Clin Cancer Res, № 23, с. 1898
https://doi.org/10.1158/1078-0432.CCR-16-2057 - Kanu, Glioblastoma multiforme oncogenomics and signaling pathways., Clin Med Oncol, № 3, с. 39
- Medikonda, A review of glioblastoma immunotherapy., J Neurooncol, № 151, с. 41
https://doi.org/10.1007/s11060-020-03448-1 - Pop, Long non-coding RNAs in brain tumours: focus on recent epigenetic findings in glioma., J Cell Mol Med, № 22, с. 4597
https://doi.org/10.1111/jcmm.13781 - Poon, Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis., Brain, № 140, с. 1548
https://doi.org/10.1093/brain/aww355 - Yeo, The role of cytokines and chemokines in shaping the immune microenvironment of glioblastoma: implications for immunotherapy., Cells, № 10, с. 607
https://doi.org/10.3390/cells10030607 - DeCordova, Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma., Front Immunol, № 11, с. 1402
https://doi.org/10.3389/fimmu.2020.01402 - Chen, Epigenetic underpinnings of inflammation: a key to unlock the tumor microenvironment in glioblastoma., Front Immunol, № 13, с. 869307
https://doi.org/10.3389/fimmu.2022.869307 - Pearson, Targeting cellular pathways in glioblastoma multiforme., Signal Transduct Target Ther, № 2, с. 17040
https://doi.org/10.1038/sigtrans.2017.40 - Khabibov, Signaling pathways and therapeutic approaches in glioblastoma multiforme (review)., Int J Oncol, № 60, с. 69
https://doi.org/10.3892/ijo.2022.5359 - Vyas, Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis., Onco Targets Ther, № 7, с. 1015
https://doi.org/10.2147/OTT.S60114 - Zhao, Inflammation and tumor progression: signaling pathways and targeted intervention., Signal Transduct Target Ther, № 6, с. 263
https://doi.org/10.1038/s41392-021-00658-5 - Al-kharboosh, Inflammatory mediators in glioma microenvironment play a dual role in gliomagenesis and mesenchymal stem cell homing: implication for cellular therapy., Mayo Clin Proc Innov Qual Outcomes, № 4, с. 443
https://doi.org/10.1016/j.mayocpiqo.2020.04.006 - Greten, Inflammation and cancer: triggers, mechanisms and consequences., Immunity, № 51, с. 27
https://doi.org/10.1016/j.immuni.2019.06.025 - Doan, Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency., Oncotarget, № 8, с. 112662
https://doi.org/10.18632/oncotarget.22637 - Jaeckle, Transformation of low grade glioma and correlation with outcome: an NCCTG database analysis., J Neurooncol, № 104, с. 253
https://doi.org/10.1007/s11060-010-0476-2 - Pangeni, The impact of epigenetic modifications on adaptive resistance evolution in glioblastoma., Int J Mol Sci, № 22, с. 8324
https://doi.org/10.3390/ijms22158324 - Appin, Molecular genetics of gliomas., Cancer J, № 20, с. 66
https://doi.org/10.1097/PPO.0000000000000020 - Darmanis, Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma., Cell Rep, № 21, с. 1399
https://doi.org/10.1016/j.celrep.2017.10.030 - Bayin, Glioblastoma stem cells: molecular characteristics and therapeutic implications., World J Stem Cells, № 6, с. 230
https://doi.org/10.4252/wjsc.v6.i2.230 - Lathia, Cancer stem cells in glioblastoma., Genes Dev, № 29, с. 1203
https://doi.org/10.1101/gad.261982.115 - Gilard, Diagnosis and management of glioblastoma: a comprehensive perspective., J Pers Med, № 11, с. 258
https://doi.org/10.3390/jpm11040258 - Zhang, Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy., Front Mol Biosci, № 7, с. 562798
https://doi.org/10.3389/fmolb.2020.562798 - Aldape, Glioblastoma: pathology, molecular mechanisms and markers., Acta Neuropathol, № 129, с. 829
https://doi.org/10.1007/s00401-015-1432-1 - Ideguchi, MRI findings and pathological features in early-stage glioblastoma., J Neurooncol, № 123, с. 289
https://doi.org/10.1007/s11060-015-1797-y - Urbanska, Glioblastoma multiforme – an overview., Contemp Oncol (Pozn), № 18, с. 307
- Derinkuyu, Primary intraspinal glioblastoma multiforme in a child., Spine J, № 15, с. e37
https://doi.org/10.1016/j.spinee.2015.07.451 - Mikkelsen, The histological representativeness of glioblastoma tissue samples., Acta Neurochir (Wien), № 163, с. 1911
https://doi.org/10.1007/s00701-020-04608-y - Wang, Peripheral blood test provides a practical method for glioma evaluation and prognosis prediction., CNS Neurosci Ther, № 25, с. 876
https://doi.org/10.1111/cns.13120 - Tichy, Prospective evaluation of serum glial fibrillary acidic protein (GFAP) as a diagnostic marker for glioblastoma., J Neurooncol, № 126, с. 361
https://doi.org/10.1007/s11060-015-1978-8 - Figueroa, Detection of glioblastoma in biofluids., J Neurosurg, № 129, с. 334
https://doi.org/10.3171/2017.3.JNS162280 - Hoelzinger, Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets., Neoplasia, № 7, с. 7
https://doi.org/10.1593/neo.04535 - Bacchi, Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review., Antiinflamm Antiallergy Agents Med Chem, № 11, с. 52
https://doi.org/10.2174/187152312803476255 - Alorfi, Pharmacological methods of pain management: narrative review of medication used., Int J Gen Med, № 16, с. 3247
https://doi.org/10.2147/IJGM.S419239 - Pountos, Nonsteroidal anti-inflammatory drugs: prostaglandins, indications, and side effects., Int J Interf Cytokine Mediat Res, № 3, с. 19
- Qiu, Cyclooxygenase-2 in glioblastoma multiforme., Drug Discov Today, № 22, с. 148
https://doi.org/10.1016/j.drudis.2016.09.017 - Gabriely, MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators., Mol Cell Biol, № 28, с. 5369
https://doi.org/10.1128/MCB.00479-08 - Lopes, Influence of NSAIDs and methotrexate on CD73 expression and glioma cell growth., Purinergic Signal, № 17, с. 273
https://doi.org/10.1007/s11302-021-09775-w - Bai, Ibuprofen on proliferation and apoptosis of sarcoma cells via PI3K/Akt/MTOR signaling pathway., Cell Mol Biol (Noisy-le-grand), № 67, с. 73
https://doi.org/10.14715/cmb/2021.67.5.10 - Takahashi-Yanaga, The Wnt/β-catenin signaling pathway as a target in drug discovery., J Pharmacol Sci, № 104, с. 293
https://doi.org/10.1254/jphs.CR0070024 - Dietrich, Corticosteroids in brain cancer patients: benefits and pitfalls., Expert Rev Clin Pharmacol, № 4, с. 233
https://doi.org/10.1586/ecp.11.1 - Lee, Corticosteroids for peritumoral edema: time to overcome our addiction?, Neuro Oncol, № 18, с. 1191
https://doi.org/10.1093/neuonc/now167 - Cenciarini, Dexamethasone in glioblastoma multiforme therapy: mechanisms and controversies., Front Mol Neurosci, № 12, с. 448734
https://doi.org/10.3389/fnmol.2019.00065 - Pitter, Corticosteroids compromise survival in glioblastoma., Brain, № 139, с. 1458
https://doi.org/10.1093/brain/aww046 - Himes, Immunosuppression in glioblastoma: current understanding and therapeutic implications., Front Oncol, № 11, с. 770561
https://doi.org/10.3389/fonc.2021.770561 - Wharton, Medications that cause weight gain and alternatives in Canada: a narrative review., Diabetes Metab Syndr Obes, № 11, с. 427
https://doi.org/10.2147/DMSO.S171365 - Alonso-Diez, Anti-angiogenic treatments interact with steroid secretion in inflammatory breast cancer triple negative cell lines., Cancers (Basel), № 13, с. 3668
https://doi.org/10.3390/cancers13153668 - Zhou, The prognostic effect of dexamethasone on patients with glioblastoma: a systematic review and meta-analysis., Front Pharmacol, № 12, с. 2318
- Mathios, Circulating biomarkers in glioblastoma: ready for prime time?, Cancer J, № 27, с. 404
https://doi.org/10.1097/PPO.0000000000000541 - Hentschel, Current surgical management of glioblastoma., Cancer J, № 9, с. 113
https://doi.org/10.1097/00130404-200303000-00007 - Seker-Polat, Tumor cell infiltration into the brain in glioblastoma: from mechanisms to clinical perspectives., Cancers, № 14, с. 443
https://doi.org/10.3390/cancers14020443 - Lara-Velazquez, Advances in brain tumor surgery for glioblastoma in adults., Brain Sci, № 7, с. 166
https://doi.org/10.3390/brainsci7120166 - Kim, Impact of fluorescence-guided surgery on the improvement of clinical outcomes in glioblastoma patients., Neurooncol Pract, № 1, с. 81
- Yano, Experimental curative fluorescence-guided surgery of highly invasive glioblastoma multiforme selectively labeled with a killer-reporter adenovirus., Mol Ther, № 23, с. 1182
https://doi.org/10.1038/mt.2015.63 - Shiroishi, Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma., Neuro Oncol, № 18, с. 467
https://doi.org/10.1093/neuonc/nov179 - Young, Current trends in the surgical management and treatment of adult glioblastoma., Ann Transl Med, № 3, с. 121
- Mann, Advances in radiotherapy for glioblastoma., Front Neurol, № 8, с. 748
https://doi.org/10.3389/fneur.2017.00748 - Glaser, Glioblastoma multiforme (GBM) in the elderly: initial treatment strategy and overall survival., J Neurooncol, № 134, с. 107
https://doi.org/10.1007/s11060-017-2493-x - Hancock, The role of radiation therapy in the treatment of central nervous system tumors., Semin Oncol Nurs, № 20, с. 253
https://doi.org/10.1016/S0749-2081(04)00089-0 - McKelvey, Differential effects of radiation fractionation regimens on glioblastoma., Radiat Oncol, № 17, с. 1
https://doi.org/10.1186/s13014-022-01990-y - Fuller, Standard fractionation intensity modulated radiation therapy (IMRT) of primary and recurrent glioblastoma multiforme., Radiat Oncol, № 2, с. 26
https://doi.org/10.1186/1748-717X-2-26 - Cruz, Highlighted advances in therapies for difficult-to-treat brain tumours such as glioblastoma., Pharmaceutics, № 15, с. 928
https://doi.org/10.3390/pharmaceutics15030928 - Carlson, Hypofractionated-intensity modulated radiotherapy (hypo-IMRT) and temozolomide (TMZ) with or without bevacizumab (BEV) for newly diagnosed glioblastoma multiforme (GBM): a comparison of two prospective phase II trials., J Neurooncol, № 123, с. 251
https://doi.org/10.1007/s11060-015-1791-4 - König, Glioblastoma radiotherapy using intensity modulated radiotherapy (IMRT) or proton radiotherapy—GRIPS trial (glioblastoma radiotherapy via IMRT or Proton BeamS): a study protocol for a multicenter, prospective, open-label, randomized, two-arm, phase III study., Radiat Oncol, № 16, с. 1
https://doi.org/10.1186/s13014-021-01962-8 - Lovo, Stereotactic radiosurgery for recurrent glioblastoma multiforme: a retrospective multi-institutional experience., Cureus, № 13, с. e18480
- Prelaj, Multimodal treatment for local recurrent malignant gliomas: resurgery and/or reirradiation followed by chemotherapy., Mol Clin Oncol, № 10, с. 49
- Kalra, A review on semaglutide: an oral glucagon-like peptide 1 receptor agonist in management of type 2 diabetes mellitus., Diabetes Ther, № 11, с. 1965
https://doi.org/10.1007/s13300-020-00894-y - Møller, A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy., Acta Oncol, № 51, с. 797
https://doi.org/10.3109/0284186X.2012.681063 - Guo, Role of nanomedicine-based therapeutics in the treatment of CNS disorders., Molecules, № 28, с. 1283
https://doi.org/10.3390/molecules28031283 - Vinjamuri, Comparative analysis of temozolomide (TMZ) versus 1,3-bis (2-chloroethyl)-1 nitrosourea (BCNU) in newly diagnosed glioblastoma multiforme (GBM) patients., J Neurooncol, № 91, с. 221
https://doi.org/10.1007/s11060-008-9702-6 - Tan, Management of glioblastoma: state of the art and future directions., CA Cancer J Clin, № 70, с. 299
https://doi.org/10.3322/caac.21613 - Herbener, Considering the experimental use of temozolomide in glioblastoma research., Biomedicines, № 8, с. 151
https://doi.org/10.3390/biomedicines8060151 - Ferri, Targeting the DNA damage response to overcome cancer drug resistance in glioblastoma., Int J Mol Sci, № 21, с. 4910
https://doi.org/10.3390/ijms21144910 - Giese, Pattern of recurrence following local chemotherapy with biodegradable carmustine (BCNU) implants in patients with glioblastoma., J Neurooncol, № 66, с. 351
https://doi.org/10.1023/B:NEON.0000014539.90077.db - Cellarier, Pharmacokinetic study of cystemustine, administered on a weekly schedule in cancer patients., Ann Oncol, № 13, с. 760
https://doi.org/10.1093/annonc/mdf098 - Parker, Molecular heterogeneity in glioblastoma: potential clinical implications., Front Oncol, № 5, с. 55
https://doi.org/10.3389/fonc.2015.00055 - Darakchiev, Safety and efficacy of permanent Iodine-125 seed implants and carmustine wafers in patients with recurrent glioblastoma multiforme., J Neurosurg, № 108, с. 236
https://doi.org/10.3171/JNS/2008/108/2/0236 - Reithmeier, BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors., BMC Cancer, № 10, с. 1
https://doi.org/10.1186/1471-2407-10-30 - Brandes, A multidrug combination designed for reversing resistance to BCNU in glioblastoma multiforme., Neurology, № 58, с. 1759
https://doi.org/10.1212/WNL.58.12.1759 - Woltjer, Neuropathologic effects of chemical warfare agents., Handb Toxicol Chem Warf Agents, с. 653
https://doi.org/10.1016/B978-012374484-5.00043-2 - Lyon, Bevacizumab as an adjuvant therapy for glioblastoma in elderly patients: the facts., Transl Cancer Res, № 7, с. S802
https://doi.org/10.21037/tcr.2018.08.19 - Gil-Gil, Bevacizumab for the treatment of glioblastoma., Clin Med Insights Oncol, № 7, с. 123
https://doi.org/10.4137/CMO.S8503 - Kazazi-Hyseni, Bevacizumab., Oncologist, № 15, с. 819
https://doi.org/10.1634/theoncologist.2009-0317 - de Aguiar, Exploring the immunological mechanisms underlying the anti-vascular endothelial growth factor activity in tumors., Front Immunol, № 10, с. 1023
https://doi.org/10.3389/fimmu.2019.01023 - Iwamoto, Bevacizumab for malignant gliomas., Arch Neurol, № 67, с. 285
https://doi.org/10.1001/archneurol.2010.11 - Corr, Bevacizumab induced hypertension in gynecologic cancer: does it resolve after completion of therapy?, Gynecol Oncol Rep, № 17, с. 65
https://doi.org/10.1016/j.gore.2016.06.002 - Alahmari, Thromboembolic events associated with bevacizumab plus chemotherapy for patients with colorectal cancer: a meta-analysis of randomized controlled trials., Am Health Drug Benefits, № 9, с. 221
- Yoshimoto, Bevacizumab-associated intestinal perforation and perioperative complications in patients receiving bevacizumab., Ann Gastroenterol Surg, № 4, с. 151
https://doi.org/10.1002/ags3.12312 - Mecca, Targeting MTOR in glioblastoma: rationale and preclinical/clinical evidence., Dis Markers, № 2018, с. 9230479
https://doi.org/10.1155/2018/9230479 - Boni, Pharmacokinetic profile of temsirolimus with concomitant administration of cytochrome P450-inducing medications., J Clin Pharmacol, № 47, с. 1430
https://doi.org/10.1177/0091270007306957 - Pópulo, The MTOR signalling pathway in human cancer., Int J Mol Sci, № 13, с. 1886
https://doi.org/10.3390/ijms13021886 - Malizzia, Temsirolimus, an MTOR inhibitor for treatment of patients with advanced renal cell carcinoma., Clin J Oncol Nurs, № 12, с. 639
https://doi.org/10.1188/08.CJON.639-646 - Xu, Hematologic toxicities associated with MTOR inhibitors temsirolimus and everolimus in cancer patients: a systematic review and meta-analysis., Curr Med Res Opin, № 30, с. 67
https://doi.org/10.1185/03007995.2013.844116 - Busaidy, The prevalence and impact of hyperglycemia and hyperlipidemia in patients with advanced cancer receiving combination treatment with the mammalian target of rapamycin inhibitor temsirolimus and insulin growth factor-receptor antibody cixutumumab., Oncologist, № 20, с. 737
https://doi.org/10.1634/theoncologist.2015-0065 - Kwitkowski, FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma., Oncologist, № 15, с. 428
https://doi.org/10.1634/theoncologist.2009-0178 - Sener, Immunotherapy in glioblastoma: current approaches and future perspectives., Int J Mol Sci, № 23, с. 7046
https://doi.org/10.3390/ijms23137046 - Bausart, Immunotherapy for glioblastoma: the promise of combination strategies., J Exp Clin Cancer Res, № 41, с. 1
https://doi.org/10.1186/s13046-022-02251-2
Дані публікації
Кількість цитувань | 0 |
Кількість джерел у списку літератури: | 108 |
Видання індексується в Scopus | Так |
Видання індексується в Web of Science | Так |